Resource Management web application

A PROJECT REPORT

Submitted by

Abhishek kumar (reg-19RGVBCA037/19, Roll-214153)
Sunny kumar (reg-19RGVBCA037/19, Roll-2040734)
Navneet kumar (reg-20cCVGCS047/20, Roll-214164)

Ankesh kumar (reg- 20cCvGCSs016/20, Roll-214133)

in partial fulfillment of the requirement for the award of the degree

of

BACHELOR OF COMPUTER APPLICATIONS

Submitted to

L.N.D COLLEGE, MOTIHARI

Babasaheb Bhimrao Ambedkar Bihar University

DECEMBER & 2023

CERTIFICATE

This is to certify that project report entitled “Resource. Management”

which is submitted by Abhishek kumar, Sunny kumar, Navneet kumar,

Shivam raj and Ankesh kumar in partial fulfiliment of the requirement for
the award of degree Bachelor of Computer Applications from
L.N.D COLLEGE, MOTIHARI affiliated to Babasaheb Bhimrao
Ambedkar Bihar University, Muzaffarpur is a record of the
candidates own work carried out by them under my supervision.
The matter embodied in this project report is original and has not been

submitted for the award of any other degree.

Mr. Prabhat kumar Dr. Pinaki Laha Arun kumar
Guide Head of the Department Principal

ACKNOWLEDGEMENT

I would like to express my special thanks of gratitude to my project
guide Mr. Prabhat Kumar as well as our course co-ordinator Dr. Pinaki
Laha who gave me the golden opportunity to do this wonderful project on
the topic Resource Management, which also helped me in doing a lot of
research and | came to know about so many new things I am really thankful
to them.

Secondly, I would also like to thank my parents and friends who
helped me a lot in finalizing this project within the limited time frame.

Date:

Place:

Abhishek Kumar Sunny kumar

reg:19RGVBCAO037 reg-:19RGVBCAO036

roll: -214153 roll:2040734
Ankesh kumar Navneet kumar
reg-:20CCVGCS016 reg-:20CCVGCS047

roll: -214133 roll: -214164

DECLARATION

We, hereby declare that this submission is our own work and that, to
the best of our Knowledge and belief. It contains no material
previously published or written by another person nor material which
to a substantial extent has been accepted for the award of any other
degree or diploma of the university or other institute of higher
learning, except where duly acknowledgement has been made in the
text.

we take full responsibility for the authenticity and originality of
this project, and we are aware of the consequences of any

misrepresentation.
Abhishek Kumar Sunny kumar
reg:19RGVBCAOQ037 reg-:19RGVBCAO036
roll: -214153 roll:2040734
signature: signature:

Ankesh kumar Navneet kumar
reg-:20CCVGCS016 reg-:20CCVGCS047
roll: -214133 roll: -214164

signature: signature:

Table of Contents

ABSTRACT
1. Introduction
1.1 Background
1.2 Objectives
2. Project Overview
2.1 Scope
2.2 Technology Stack
2.3 Key Features Overview
3. System Architecture
3.1 Django Framework
3.2 Backend Components
3.3 Frontend Components
3.4 Database Design
4. User Management
4.1 Account Creation
4.2 Authentication System
5. Online Exam Module
5.1 Exam Creation
5.2 Exam Taking
5.3 Result Analysis
6. Blog System
6.1 Content Creation
6.2 Categorization and Search
7. Notes Repository
7.1 Upload and Download Features
7.2 Organization and Accessibility
7.3 Integration with Other Modules
8. Discussion Forum
8.1 Discussion Creation
8.2 Participation Features
9. Implementation
9.1 Development Environment Setup
9.2 Django Best Practices
9.3 Testing Strategies
10. Conclusion

10.1 Achievements

10.2 Challenges

10.3 Future Enhancements
11. Acknowledgments

11.1 Contributions from Team Members
12. References

12.1 Django Documentation

12.2 Relevant Tutorials and Resources

Introduction

1.1 Background

The project stems come from the need for an integrated system that not only
manages resources efficiently but also incorporates a blog system for
knowledge sharing and guiding the students come from grassroot level, testing
functionalities for quality assessment of one’s knowledge and make revision
from all subject collectively. a notes application for user productivity and
discussion forum for solving student’s Problems.

1.2 Objectives

“Unlocking potential, through education”

The main objective behind the Resource Management project is to take a step
towards our goal. Generally, we found that the students come Frome villages
and small towns don’t have access to quality resources and guidance so in
order to take a step we built website on which they can improve their
productivity and solve their problems. The aim is to enhance collaboration,
productivity, and reliability within the students come from such conditions.

Project Overview

2.1 Scope of the Project

The platform will be built using the Django framework for a robust backend,
ensuring scalability and security. Users will have the ability to create accounts,
access online exams with features like read and write blog etc. The project
encompasses the creation of individual web apps for resource management,
blogging, testing, and notes. Each web app is designed to function
independently while allowing seamless interaction with the others.

While the initial scope is focused on essential features, the project allows for
future enhancements, such as the integration of additional functionalities like a
chat system, online attendance through face recognition, separate features for
registering and selling product, fund rising, extending its features towards

humanities and science students and external APl integrations, to adapt to
evolving educational needs.

2.2 Technology Stack:

Backend Framework: Django
Frontend: HTML, CSS, JavaScript, bootstrap
Database: SQLite (for development)

User Authentication: Django Authentication System

2.3 Key Features Overview

User sign-in and sign-up:

Description: Users can create personalized accounts, for a secure and
customized experience within the platform and by sign in their
account they can create blog and post question on discussion forum.

Objective: Enable users to access features tailored to their educational
needs and maintain a secure user environment.

Online Test Module:

Description: Facilitates the creation, administration, and analysis of
online test with features such as adding editing, deleting question in
database by log-in as admin, result analysis for students.

Objective: Enhance the assessment and evaluation process, providing
students with real-time feedback on their performance and make
ready for exam.

Blog System:

Description: Empowers students and teachers to create, read, and
engage in discussions around various category of educational content

through a robust blogging system. Features include commenting,
categorization, and search functionalities.

Objective: Foster collaboration and knowledge-sharing within the
student’s community, creating a dynamic learning environment.

Notes Repository:

Description: Provides students and admin with a centralized
repository for uploading, downloading, and organizing educational
materials, ensuring easy accessibility and resource management.

Objective: Streamline the organization of course-related materials,
offering students a convenient way to manage and access study
resources.

Discussion Forum:

Description: Establishes a collaborative space for students to
participate in discussions on a particular educational topic.

Objective: Promote interactive learning and communication,
creating a vibrant community of learners within the platform.

System architecture

3.1 Django framework:

Django is a high-level open-source web framework for building
web applications in Python. it is suitable for a wide range of web
development projects, from small-scale applications to large,
complex systems. Its architecture follows the Model-View-
Template (MVT) pattern, which is a slight variation of the more
commonly known Model-View-Controller (MVC) pattern. In the
Django context, the MVT pattern is comprised of the following
components:

Model:

Definition: The Model represents the database structure and
business logic of the application.

Responsibilities: Defines the structure of the database tables
(schemas) through Django models. Contains methods to
manipulate and retrieve data from the database.

Example: In a blogging application, the Model would define the
structure of the "Post" and "category" tables, including fields
like title, content, publication date, and images details.

View:

Definition: The View handles the presentation logic and user
interface of the application.

Responsibilities: Receives user requests and interacts with the
Model to fetch or update data. Determines which data and how
much of it to display to the user. Renders the appropriate
templates to generate HTML or other response formats.

Example: In the blogging application, the View would handle
the request to view a blog post. It would interact with the Model
to fetch the post data and then render an HTML template to
display the post.

Template:

Definition: The Template represents the presentation layer,
defining how the data received from the View should be
presented.

Responsibilities: Contains HTML code mixed with Django
template language syntax to dynamically render data. Defines
the structure and layout of the final output sent to the user's
browser. Supports the insertion of dynamic data and logic using
template tags and filters.

Example: In the blogging application, the Template would define
the structure of the HTML page displaying a blog post. It might
include tags to insert the post title, content, and category
information dynamically.

URL Routing: The framework uses a declarative URL routing
system that makes it easy to map URLs to specific views. This
promotes clean and readable URL patterns, enhancing
maintainability.

Security: Django includes numerous security features by default,
such as protection against SQL injection, cross-site scripting
(XSS), and cross-site request forgery (CSRF). It encourages
secure coding practices to mitigate common web security
vulnerabilities.

Overall, Django is widely recognized for its
emphasis on simplicity, reusability, and maintainability in web
development.

3.2 Backend components

The backend of Resource Management website is implemented
using Django web framework, a high-level python web
framework that follow the MVT architecture. The backend is
responsible for processing user requests, interacting with the
database, and serving the necessary data to the frontend.

Django Framework: The core framework handles request
processing, routing, and view rendering.

Models: Database models define the structure of the data,
including User, Category, post, notes, and others.

Views: The views handle the logic for processing user requests
and returning appropriate responses.

URL Routing: The URL patterns are defined to route requests to
the corresponding views.

User authentication: session variables are used for login and
logout functionality.

3.3 frontend components

The frontend of the Resource Management Website is built
using standard web technologies, including HTML, CSS,
bootstrap and JavaScript. The user interface is designed to be
intuitive, responsive, and accessible mainly through bootstrap.

HTML, CSS, JavaScript:

Bootstrap is integrated into the frontend, utilizing its responsive
design components for an adaptive user interface.

HTML templates are designed for each feature, ensuring a
consistent and visually appealing user experience.

Custom CSS styles enhance the visual presentation and maintain
brand consistency.

JavaScript is used for dynamic frontend interactions.

3.4 Database design

The Resource Management Website uses the SQLite database to
persistently store data. The choice of SQLite offers simplicity and ease
of use, making it suitable for small to medium-scale applications. The

database schema is defined through Django models, ensuring a

relational structure that captures the relationships between entities.

SQLite Database: The lightweight, embedded database engine
handles data storage.

Django Models: Models define entities such as User, Category, post,
and notes, specifying fields and relationships.

User management

4.1 Account creation

User management is a critical aspect of the Resource Management
Project, providing a secure and personalized experience for individuals

engaging in online tests, blogging, discussion forum, and notes
uploading. This section outlines the implementation of user
authentication, login, and logout features within the project.

User registration:

The user registration process allows individuals to create accounts on the
platform. Key user information, such as username, email, and password, gender is

Resource management

Sign Up
Username
Enter your username
Email address
Enter your email

Password

Enter your password

Gender

© male

female

Sign Up

alredy have account?

User registration form

collected during registration process.
Passwords are securely hashed and stored in
database to protect user data. Once’s user
makes their registration he/she will be
redirected to sign in form.

Login form:

A login form is provided on the
platform's frontend, prompting users to enter
their credentials. Validates user input and
authenticates users against stored credentials.

Session Management:
Initiates a user session upon successful login.

Maintains session data, allowing users to stay
authenticated while navigating the platform.

Password Reset

Logout features: Users can initiate a logout

action, terminating their session securely.
Clears session data to ensure the user is no Email Address

longer authenticated.

Role-Based Access Control: in resource
management we provide role base entry
example by login a student can take test,
manage resource while an admin can
perform crud operations on database.

Forgot Password: Implements a passwo

recovery mechanism for users who forget

their passwords.

Enter username
for

Enter new password

rd

Reset Password

Resource management Home blog Test Notes Sigin Signup services ~

Username

enter username

Password

password

don't have account?
forgotten password?

name@example.com

Submit

Login form for user management
The sign form can display various error message depends on various
conditions for example when an user enters wrong details then it display “sorry.. wrong
details” while an user try to register himself with existing username or email then after
signup validation it redirect to signin page with error message“user already exist with

given username or email”.

Interface of signin page when an user enters wrong details

Username

enter username

Password

password

don’t have account?
forgotten password?

sorry... wrong details

User try to register with existing username or email redirected to sign in page

user already exist with user name or email

Username

enter username

Password
password

don't have account?

forgotten password?

Template file for sign in page: we have extended the base.html page for sign in page
using extend template tag provided by Django.

Template for sign in page(sign_in.html)

{% extends "online_exam/base.html" %}
{% block title %}sign_in{% endblock %}
{% block content %}
<form action="/online_exam/sign_in_validation/" method="post">
{% csrf_token %}
<div class="container">
<div class="row justify-content-evenly mt-5">
<div class="col-10">
<div class="mb-3">
<h3 class="text-center mt-5 ml-5 p-2" style="color:
red;">{{message3}} {{message5}}</h3>
<label for="formGroupExampleInput" class="form-
label">Username</label>
<input type="text" class="form-control”
id="formGroupExampleInput" placeholder="enter username" name="username">
</div>
<div class="mb-3">
<label for="formGroupExampleInput2" class="form-
label">Password</label>
<input type="password" class="form-control"
id="formGroupExampleInput2" placeholder="password" name="password">
</div>
<div class="text-center">
<button type="submit" class="btn btn-primary">Sign in</button>
</div>
<div class="text-center">
don't have account?
</div>
<div class="text-center">

forgotten
password?
</div>
</div>
</div>
</div>
</form>
<div>
<h3 class="text-center mt-5 ml-5 p-2" style="color: red;">{{message}}
{{message2}}</h3>
</div>

{% endblock %}
views.py file for user management
def sign_in(request):

d={}
demo=user.objects.filter(user_name = 'admin')
if not demo:
create_admin()
try:
u=request.GET['error']
if u == str(1):
d["message']="sorry... wrong details"’
elif u == str(2):
d['message2']="kya kar raha hai bhai..'
elif u == str(3):
d['message3']="user already exist with user name or email'
elif u == str(4):
d['message5']="wrong username or password’
else:
d["message']="
except:
pass
return render(request, 'online_exam/sign_in.html',d)

function for validating login credentials

def sign_in validation(request):
try:
demo=user.objects.get(user_name=request.POST['username'] ,
password=request.POST['password'])
demo.user_name
request.session['sessionuser']=demo.user_name
request.session['email’]=demo.email
request.session['gender']=demo.gender

url="http://localhost:8000/online_exam/home/"'
except:
url="http://localhost:8000/online_exam/sign_in/?error=1"'
return HttpResponseRedirect(url)

function for saving user data to database
def save user(request):
try:
u=user.objects.filter(user_name=(request.POST['username']))
if not u:
User=user()
User.user_name=request.POST['username’]
User.email=request.POST['email"’]
User.password=request.POST['password’]
User.gender=request.POST['gridRadios"]
User.save()
Return HttpResponseRedirect('http://localhost:8000/online_exam/sign_in/"')
else:
return HttpResponseRedirect('/online_exam/sign_in/?error=3")
except:
return HttpResponseRedirect('/online_exam/sign_in/?error=3")

function for clearing session variable
def log out(request):
request.session.clear()
return HttpResponseRedirect('/online_exam/sign_in/")

models for user management

from django.db import models

class user(models.Model):
user_name=models.CharField(max_length=25,primary_key=True)
email = models.EmailField(unique=True,null=False)
password=models.CharField(max_length=25,null=False)
gender=models.BooleanField(default=True)

as we describe above Django works on mvt architecture where render
function is used for preparing output which takes html file, python
dictionary and request object as input and return output using return
keyword. When a user make request then request goes to urlpy file
and from their it goes to views.py file to executed mapped python
function. User management system is built as part of online_exam
module so necessary imported file is present in online_exam module.

4.2 Authentication system

Django's built-in authentication system s utilized for user account
management.

Sessions are maintained for user login and logout functionality as you
can see after sign in validation, we create session variable which is
deleted when user logout.

Authentication middleware ensures secure access to different features
based on user roles.

csrf mechanism s used for form submission.

Online exam module

5.1 Exam creation:

admin can create exams with multiple-choice question by login through sign in page.
He can enjoy various features such as add, modify and delete the question from
database.in resource management, there are two admin Pannel, one through login
page and one by default provided by Django.

When user login as admin then resource management provide a
different view and feature while when a student enters by login then it shows different
view.

Resource management Home blog Test Notes Sigin Signup services ~

set new question create_blog log_out

Welcome to RESOURCE MANAGEMENT]

Welcome, Admin!

Create Blog

Compose and publish new blog posts for the community.

Create Blog

Question Management

Manage questions for online tests.

Create Question Manage discussion forum

name

name@example.com

Submit

Admin interface for managing online exam

question statement

enter question

optiona

optionb

|

optionc

|

optiond

|

answer

save

It is question setting page, when
admin set a question, then he/she
will be redirected to question data
base where edit or modify option is
available. this page also has same
nav bar or footer.

Resource management Home blog Test Notes Sigin Signup services ¥

set new question create_blog log_out
question optiona optionb pti ptiond answer edit delete
1 .choose the oldest programming language? b language c language java language Jjava script language a edit delete
2 .which is not a language of 8th schedules? hindi english java language all of these c edit delete
3 .ponnian selvom is also known as... samundra gupta akbra rajendra chola raj raj chol d edit delete
4 .which is known for its fragrance? red sandalwood white sandalwood both none b edit delete
5 .ooty is located in which indian state? bihar punjab tamilnadu uttrakhand < edit delete
6 .choose the immutable element in python..... list tuple string more than one d edit delete
7 how many seats of lower house are reserved for p.o.k ? 24 35 20 25 c edit delete

Submit

Enter Title for blog

question statement

write blog choose the oldest programming language?

optiona

Ib language l

optionb

Ic language l

optionc

Ijava language l

optiond

Ijava script language l

- answer

upload image

Choose File | No file chosen
category
| Technology ~

blog writing page question editing page

when admin want to edit question then he can click edit button before the
question and question editing page will open where question and their options
can be edited with update button which redirect to question database table.

If admin click on delete button, then after deleting question it will be redirected
to question table. He can also upload a blog by upload button.

Models.py file

from django.db import models

class question(models.Model):
gno=models.IntegerField(primary_key=True,auto_created=True)
que=models.CharField(max_length=200,blank=True)
optiona=models.CharField(max_length=100,null=True,blank=True)
optionb=models.CharField(max_length=100,null=True,blank=True)
optionc=models.CharField(max_length=100,null=True,blank=True)
optiond=models.CharField(max_length=100,null=True,blank=True)
ans=models.CharField(max_length=1)

this is model which is created to manage account creation

class user(models.Model):
user_name=models.CharField(max_length=25,primary_key=True)
email = models.EmailField(unique=True,null=False)
password=models.CharField(max_length=25,null=False)
gender=models.BooleanField(default=True)

this model is created for managing any particular message send by any user or
student.

class message(models.Model):
name=models.CharField(max_length=20)
email=models.EmailField(primary_key=True,unique=True,null=False)
message=models.TextField()
def _ str_ (self):
return self.name

View.py file of online exam
from django.shortcuts import render
from django.http import HttpResponse,HttpResponseRedirect

from online_exam.models import question,user,message

import random

def set_question(request):

return render(request,'online_exam/set_question.html')

this views function save question to database when admin send new question
through question setting page

def save_question(request):
demo=question()
demo.que=request.POST['question']
demo.optiona=request.POST['optiona’]
demo.optionb=request.POST['optionb']
demo.optionc=request.POST['optionc']
demo.optiond=request.POST['optiond']
demo.ans=request.POST['answer']
demo.save()

return HttpResponseRedirect('http://localhost:8000/online_exam/view_question/')

this manage when admin wants to see question database

def view_question(request):
try:
if request.session['sessionuser'] == 'admin':
glist=question.objects.all()
return render(request,'online_exam/view_question.html',{'questions':qlist})
else:
return HttpResponseRedirect('/online_exam/sign_in/')
except:

return HttpResponseRedirect('/online_exam/sign_in/')

this views.py function run when admin edit question and click
update button to save edit change
def edit_save(request):
n=int(request.POST['qnumber'])
Q=question.objects.get(qno=n)
Q.qno=n
Q.que=request.POST['question']
Q.optiona=request.POST['optiona']
Q.optionb=request.POST['optionb']
Q.optionc=request.POST['optionc']
Q.optiond=request.POST['optiond']
Q.ans=request.POST['answer']
Q.save()

return HttpResponseRedirect('http://localhost:8000/online_exam/view_question/')

this views.py function run when admin click edit button before
question
def edit_question(request):
try:
if request.session['sessionuser'] == 'admin':
n=int(request.GET['gno'])
Q=question.objects.get(qno=n)
return render(request,'online_exam/edit_question.html',{'question':Q})
else:
return HttpResponseRedirect('/blog/main_blog/')
except:

return HttpResponseRedirect('/online_exam/sign_up/')

this views.py function run when admin click delete button before
question

def delete_question(request):

try:

n=int(request.GET['qno'])

ques=question.objects.get(qno=n)

ques.delete()

return HttpResponseRedirect('http://localhost:8000/online_exam/view_question/')
except:

return HttpResponseRedirect('http://localhost:8000/online_exam/sign_in/?error=2')

this views.py function is for providing interface after sign in
def home(request):
try:
if request.session['sessionuser']:
return render(request,'online_exam/home.html')
else:
return HttpResponseRedirect('/online_exam/sign_in/')
except KeyError:
return HttpResponseRedirect('/online_exam/sign_in/')
except:

return HttpResponseRedirect('/online_exam/sign_in/?error=2')

def create_admin():
demo=user()
demo.user_name='admin’
demo.password='admin123'
demo.email='admin123@gmail.com'
demo.gender="1"'

demo.save()

this views.py function run when admin logout

def log_out(request):

request.session.clear()

return HttpResponseRedirect('/online_exam/sign_in/')

this views.py function run when any user send message through
footer section

def s_message(request):

try:
demo=message()
demo.name=request.POST['name’]
demo.email=request.POST['email’]
demo.message=request.POST['message']
demo.save()
return HttpResponse('<h2> message successfully submitted </h2>')

except:

return HttpResponse('<h2>some error occured .. try after some time</h2>')

when any user send message through contact form as shown in
picture then the above views.py function will run .

name@example.com

template of online exam module

this is the template page for admin and student which dynamically show
content based on user.

{% extends "online exam/base.html"” %}
{% block title %}home{% endblock %}
{% block content %}
{% if request.session.sessionuser == 'admin' %}

<l-- navigator of admin-->
<ul class="nav justify-content-end">
<li class="nav-item">
<a class="nav-1link active" aria-current="page"
href="http://localhost:8000/online_exam/set_question/">set new question
</1i>
<1i class="nav-item">
<a class="nav-link link-warning"
href="http://localhost:8000/online_exam/view_question/">view question
</1i>
<li class="nav-item">
create blog
</1i>
<li class="nav-item">
log out

</1i>

<!-- Admin Dashboard -->
<div class="container mt-4">
<!-- Admin Options Section -->

<div class="admin-options">
<h2>Welcome to <span id="welcome" style="color:
blueviolet;"></h2>
<p>Welcome, {{request.session.sessionuser |capfirst}}!</p>

<!-- Create Blog Option -->
<div class="card">
<div class="card-body">
<h5 class="card-title">Create Blog</h5>
<p class="card-text">Compose and publish new blog posts for the
community.</p>
Create
Blog
</div>
</div>

<!-- Question Management Options -->
<div class="card mt-3">
<div class="card-body">
<h5 class="card-title">Question Management</h5>
<p class="card-text">Manage questions for online tests.</p>
<a href="/online_exam/set _question/" class="btn btn-
success">Create Question
<a href="/online_exam/view_question/" class="btn btn-
danger">View Question
Manage
discussion forum
</div>
</div>

<!-- Other Admin Options -->
<!-- Add more admin-specific options here -->

</div>
</div>

{% else %}

<!-- navigator of user-->
<ul class="nav justify-content-end">
<li class="nav-item">
<a class="nav-1link active" aria-current="page"
href="/online_exam/start_test/">start_test
</1i>
<li class="nav-item">
log-out
</1i>
<li class="nav-item">
create_blog

</1li>

<!-- user dashboard -->
<div class="container mt-4">
<!-- students Options Section -->

<div class="admin-options">
<h2>Welcome to <span id="welcome" style="color:
blueviolet;"></h2>
<p>Welcome, {{request.session.sessionuser |capfirst}}!</p>

<!-- Create Blog Option -->
<div class="card">
<div class="card-body">
<h5 class="card-title">Create Blog</h5>

<p class="card-text">Compose and publish new blog posts for the
community.</p>
Create
Blog
</div>
</div>

<l-- Question Management Options -->
<div class="card mt-3">
<div class="card-body">
<h5 class="card-title">Resource Management</h5>
<p class="card-text">Manage Resources.</p>
Start

Test
post question on forum
Explore Notes

</div>
</div>

<!-- Other Admin Options -->
<!-- Add more admin-specific options here -->
{% endif %}

</div>

</div>
<!--cdn for auto text typing-->
<script src="https://unpkg.com/typed.js@2.1.0/dist/typed.umd.js"></script>
<script>
var typed = new Typed('#welcome', {
strings: ['RESOURCE MANAGEMENT',],
typeSpeed: 50,
backspeed:80,
loop:true

})s

</script>
{% endblock %}

This template page is passed to views.py (def
set _question(request) function) and this template page has
form which send question data to save question(request):
function of views.py which ultimately save data in
database.

“Set_question.html”

{% extends "online_exam/base.html" %}
{% block title %} set_question{% endblock %}

{% block content %}

{% load static %}

<link rel="stylesheet" href="{% static 'css/question.css' %}">
{% if request.session.sessionuser == 'admin' %}

<!-- pavigator of admin-->
<ul class="nav justify-content-end list-group list-group-horizontal-sm">
<li class="nav-item">
<a class="nav-link active" aria-current="page"
href="http://localhost:8000/online_exam/set_question/">set new question
</1i>
<li class="nav-item">
<a class="nav-link link-warning"
href="http://localhost:8000/online_exam/view_question/">view question
</1i>
<1i class="nav-item">
create blog
</1i>
<1i class="nav-item">
<a class="nav-1ink"
href="http://localhost:8000/online_exam/log out/">log out
</1i>

{% else %}

<!-- navigator of admin-->
<ul class="nav justify-content-end list-group list-group-horizontal-sm">
<li class="nav-item">
<a class="nav-1link active" aria-current="page"
href="http://localhost:8000/online_exam/start_test/">start_test
</1i>
<1i class="nav-item">
<a class="nav-1link"
href="http://localhost:8000/online_exam/log out/">log-out
</1i>
<li class="nav-item">
create_blog
</1li>

{% endif %}

<l--edit question-->

<div class="container-fluid">
<div class="row">

<div class="col-12 col-sm-12">

<form action="http://localhost:8000/online_exam/save_question/"
method="post">
{% csrf_token %}
<div class="title"> question statement</div>
<div class="data">

<textarea name="question" id="" cols="50" rows="5"
placeholder="enter question"></textarea>
</div>

<div class="title">optiona</div>
<div class="data">
<input type="text" name="optiona">
</div>
<div class="title">optionb</div>
<div class="data">
<input type="text" name="optionb">
</div>
<div class="title">optionc</div>
<div class="data">
<input type="text" name="optionc">
</div>
<div class="title">optiond</div>
<div class="data">
<input type="text" name="optiond">
</div>
<div class="title">answer</div>
<div class="data">
<select name="answer" id="">
<option value="a">a</option>
<option value="b">b</option>
<option value="c">c</option>
<option value="d">d</option>
</select>
</div>
<input type="submit" value="save" class="btn btn-primary mt-2">

</form>
</div>
</div>
</div>

{% endblock %}

This template page is passed when admin request to view question database

{% extends "online exam/base.html" %}
{% block title %}question_database{% endblock %}
{% block content %}

{% if request.session.sessionuser == 'admin' %}
navigator of admin nav bar code is removed for space management
{% else %}
<!-- navigator of student same as which shown in home page -->
{% endif %}

<!--fetching question from question_database-->
<div class="table-responsive">

<table class="table table-striped table-hover">

<tr>
<th>question</th>
<th>optiona</th>
<th>optionb</th>
<th>optionc</th>
<th>optiond</th>
<th>answer</th>
<th>edit</th>
<th>delete</th>

</tr>

{% for g in questions %}

<tr>
<td class="que">{{forloop.counter}} .{{q.que}}</td>
<td>{{q.optiona}}</td>
<td>{{q.optionb}}</td>
<td>{{q.optionc}}</td>
<td>{{q.optiond}}</td>
<td>{{q.ans}}</td>
<td>edit</td>
<td>delete</td>

</tr>
{% endfor %}

</table>

</div>
{% endblock %}

Template page which is used to render create_blog functionality called by
def create_blog(request): function of blog views.py file. This template has
form which send blog data for storage to def save_post(request): function of
same.

{% extends "online_exam/base.html" %}

{% block title %}create_blog{% endblock %}

{% block content %}

{% if request.session.sessionuser == 'admin' %}

<!-- navigator of admin-->
<ul class="nav justify-content-end">
<li class="nav-item">
<a class="nav-link active" aria-current="page"
href="http://localhost:8000/online_exam/set_question/">set new question
</1i>
<1li class="nav-item">
<a class="nav-1link link-warning"
href="http://localhost:8000/online_exam/view_question/">view question
</1i>
<li class="nav-item">
create_blog
</1i>
<li class="nav-item">
log out
</1i>

{% else %}

<!-- navigator of admin-->
<ul class="nav justify-content-end">
<li class="nav-item">
<a class="nav-1link active" aria-current="page"
href="/online_exam/start_test/">start_test
</1i>
<li class="nav-item">
log-out
</1i>
<li class="nav-item">
create blog
</1i>

{% endif %}
<l--blog writing-->
<div class="container">
<form action="/blog/save_blog/" method="post" enctype="multipart/form-
data">
{% csrf_token %}
<div class="title pl-4 ">Enter Title for blog</div>
<div class="data pl-4">

<textarea name="title" id="" cols="40" rows="3"></textarea>
</div>

<div class="title pl-4">write blog</div>

<div class="title pl-4"><textarea name="content" id="" cols="40"

rows="25"></textarea></div>

<div class="title mt-4 pl-4">upload image</div>
<div class="data pl-4">

<input type="file" name="picture" >
</div>
<div class="title mt-3 pl-4">category</div>
<div class="data pl-4">

<select name="category" >

{% for c in cat %}

<option value="{{c.no}}">{{c.name}}</option>
{% endfor %}
</select>
</div>
<input type="submit" value="upload" class="btn btn-success mt-3">
</form>
</div>
{% endblock %}

This template page is use to render edit question functionality .when admin
enter edit button before question then this html page is used by def
edit_question(request): function of views.py file of online exam.after editig

this send data to edit_save(request): function to updte database.
“Edit_question.html”

{% extends "online_exam/base.html" %}

{% block title %}edit question{% endblock %}

{% block content %}

{% if request.session.sessionuser == 'admin' %}

<!-- navigator of admin-->
<ul class="nav justify-content-end list-group list-group-horizontal-sm">
<li class="nav-item">
<a class="nav-1link active" aria-current="page"
href="/online_exam/set_question/">set new question

</1i>
<li class="nav-item">
<a class="nav-link link-warning"
href="/online_exam/view question/">view question
</1li>
<li class="nav-item">
create_blog
</1li>
<li class="nav-item">
log out
</1li>

{% else %}

<!-- navigator of admin-->

<ul class="nav justify-content-end list-group list-group-horizontal-sm">

<li class="nav-item">
<a class="nav-link active" aria-current="page"
href="/online_exam/start_test/">start_test
</1i>
<li class="nav-item">
log-out
</1i>
<li class="nav-item">
create blog
</1i>

{% endif %}
<!--edit question section-->
<div class="container-fluid">
<form action="/online_exam/edit_save/" method="post">
{% csrf_token %}
<input type="hidden" name="qgnumber" value="{{question.qgno}}">
<div class="title"> question statement</div>
<div class="data">
<textarea name="question" id="" cols="50" rows="5"
>{{question.que}}</textarea>
</div>
<div class="title">optiona</div>
<div class="data">

<input type="text" name="optiona" value="{{question.optiona}}">

</div>
<div class="title">optionb</div>
<div class="data">

<input type="text" name="optionb" value="{{question.optionb}}" >

</div>

<div class="title">optionc</div>
<div class="data">
<input type="text" name="optionc" value="{{question.optionc}}">
</div>
<div class="title">optiond</div>
<div class="data">
<input type="text" name="optiond" value="{{question.optiond}}">
</div>
<div class="title">answer</div>
<div class="data">
<select name="answer" id="">

<option value="a" {% if question.ans == 'a' %}selected{% endif
%}>a</option>
<option value="b" {% if question.ans == 'b' %}selected{% endif
%}>b</option>
<option value="c" {% if question.ans == 'c' %}selected{% endif
%}>c</option>
<option value="d" {% if question.ans == 'd' %}selected{% endif
%}>d</option>
</select>
</div>
<div>
<input type="submit" value="update" class="btn btn-secondary mt-
3">
</div>
</form>
</div>

{% endblock %}

5.2 exam taking

student can give exams with multiple-choice question by login through sign in page.
He can enjoy various features such as add blog, post question, start test.

When user login as student then resource management provide
a different view and features while when an admin enters by login then it shows
different view.

Resource management Home blog Test Notes Sigin Signup services ~

start_test log-out create_bloc

Welcome to RESOURCE M|

Welcome, Abhishek kumar!

Create Blog

Compose and publish new blog posts for the community.

Create Blog

Resource Management

Manage Resources.

Start Test | post question on forum Explore Notes

name@example.com

Submit

Views.py file for online_exam

when user sign in as student then above view is render dynamically by using this
home function and home.html template file which is used for admin interface.

def home(request):
try:
if request.session['sessionuser']:
return render(request, 'online_exam/home.html")
else:
return HttpResponseRedirect('/online_exam/sign_in/")
except KeyError:
return HttpResponseRedirect('/online_exam/sign_in/")
except:

return HttpResponseRedirect('/online_exam/sign_in/?error=2")

THIS FUNCTION EXECUTE WHEN AN STUDENT CLICK ON START TEST BUTTON

def start_test(request):
try:
if request.session['sessionuser']:
qlist=list(question.objects.all())
random.shuffle(qlist)
gpool=qlist[:5]
return render(request,'online_exam/start_test.html'{'qpool’:gpool})
else:
return HttpResponseRedirect('/online_exam/sign_in/")
except:

return HttpResponseRedirect('/online_exam/sign_in/")

(start_test.html)template file is used by def start_test(request):
function for rendering

{% extends "online_exam/base.html" %}

{% block title %}test{% endblock %}

{% block content %}

{% if request.session.sessionuser == 'admin' %}

<!-- navigator of admin-->
<ul class="nav justify-content-end">
<li class="nav-item">
<a class="nav-1link active" aria-current="page"
href="http://localhost:8000/online_exam/set_question/">set new question
</1li>
<1i class="nav-item">
<a class="nav-1link link-warning"
href="http://localhost:8000/online_exam/view_question/">view question
</1i>
<li class="nav-item">
create blog

</1i>
<li class="nav-item">
<a class="nav-1ink"
href="http://localhost:8000/online_exam/log_out/">log out
</1i>

{% else %}

<l-- navigator of admin-->
<ul class="nav justify-content-end">
<li class="nav-item">
<a class="nav-link active" aria-current="page"
href="http://localhost:8000/online_exam/start_test/">start_test
</1i>
<li class="nav-item">
<a class="nav-1ink"
href="http://localhost:8000/online_exam/log out/">log-out
</1i>
<li class="nav-item">
create_blog
</1i>

{% endif %}

<div class="container-fluid">
<div class="row pl-4">
<div class="col-10">

<form action="http://localhost:8000/online_exam/test result/"
method="post">
{% csrf_token %}
{% for g in gpool %}
<input type="hidden" name="gno{{q.gno}}" value="{{q.qno}}">
<div class="question">{{forloop.counter}} .{{q.que}}</div>
<div class="option"><input type="radio" name="ans{{q.gno}}" value="a"
>{{q.optiona}}</div>
<div class="option"><input type="radio" name="ans{{q.qno}}" value="b"
>{{q.optionb}}</div>
<div class="option"><input type="radio" name="ans{{q.qno}}" value="c"
>{{q.optionc}}</div>
<div class="option"><input type="radio" name="ans{{q.gno}}" value="d"
>{{q.optiond}}</div>
{% endfor %}
<input type="submit" value="submit"class=" btn btn-primary mt-3" >
</div>

</div>
</form>
</div>
{% endblock %}

the interface when a student clicks on start_test then randomly a
chunk of 5 question comes from database in multiple choice
questions. When one refresh page then questions will be changed.

Resource management Home blog Test Notes Sigin Signup services v

start_test log-out create_blog

1 .choose the oldest programming language?
Ob language

Oc language

Ojava language

Ojava script language

2 .choose the immutable element in python.....
Olist

Otuple

Ostring

Omore than one

3 .how many seats of lower house are reserved for p.o.k 7
024

035

020

025

4 which is not a language of 8th schedules?
Ohindi

Oenglish

Ojava language

Qall of these

5 .ooty is located in which indian state?
Obihar

Opunjab

Otamilnadu

Outtrakhand

name@example.com

Submit

5.3 Result Analysis:

When a student submits the test then his test data (s sent to test result function for
result analysis, where it shows where we make a mistake and right wrong questions.

Views.py file of online_exam

def test_result(request):
try:
if request.session['sessionuser']:
total_wrong=0
total write=0
attempted_ques=0
wg=[]
qlist=[]
for k in request.POST:
if k.startswith('qgno'):
glist.append(int(request.POST[k]))
for n in glist:
try:
g=question.objects.get(gno=n)
if g.ans == request.POST['ans'+str(n)]:
total_write+=1
else:
total_wrong+=1
wq.append(q)
attempted_ques+=1
except:
pass
d={
'total_wrong':total_wrong ,
"total_wright':total_write ,
'attempted_ques':attempted_ques,
'wg' :wq
}
return render(request, 'online_exam/test_result.html',d)
except:
return
HttpResponseRedirect('http://localhost:8000/online_exam/sign_in/")

template file which is used for result analysis

{% extends "online exam/base.html" %}

{% block title %}test_result{% endblock %}

{% block content %}

{% if request.session.sessionuser == 'admin' %}

<!-- navigator of admin-->
<ul class="nav justify-content-end">

<li class="nav-item">
<a class="nav-link active" aria-current="page"
href="http://localhost:8000/online_exam/set_question/">set new question
</1i>
<li class="nav-item">
<a class="nav-1link link-warning"
href="http://localhost:8000/online_exam/view question/">view question
</1li>
<li class="nav-item">
create_blog
</1li>
<li class="nav-item">
<a class="nav-1link"
href="http://localhost:8000/online_exam/log_out/">log out
</1i>

{% else %}

<!-- navigator of admin-->
<ul class="nav justify-content-end">
<li class="nav-item">
<a class="nav-1link active" aria-current="page"
href="http://localhost:8000/online_exam/start_test/">start_test
</1i>
<1i class="nav-item">
<a class="nav-link"
href="http://localhost:8000/online_exam/log out/">log-out
</1i>
<li class="nav-item">
create blog
</1i>

{% endif %}

<table class="table table-dark table-striped pl-3 mt-3">
<tr>
<th>total question:</th>
<th>5</th>
</tr>
<tr>
<th>attempted question</th>
<th>{{attempted_ques}}</th>
</tr>
<tr>
<th>wright question</th>
<th>{{total wright}}</th>

</tr>

<tr>
<th>wrong question</th>
<th>{{total_wrong}}</th>

</tr>

</table>

<table class="table table-striped table-hover pl-3">

<tr>

<th class="text-center" style="color: red;"> Questions in which

you make mistake <h1>😢</hl></th>
</tr>

{% for q in wq %}
<tr>

<td>

<div>{{forloop.counter}} .{{q.que}}</div>

<div>{{q.optiona}} <input type="radio" {% i

endif %}></div>

<div>{{q.optionb}} <input type="radio" {% i

endif %}></div>

<div>{{q.optionc}} <input type="radio" {% i

endif %}></div>

<div>{{q.optiond}} <input type="radio" {% i

endif %}></div>
</td>
</tr>
{% endfor %}
<tr>
<td class="text-center">

test again

</td>
</tr>
</table>
{% endblock %}

.ans

.ans

.ans

.ans

checked {%
checked {%
checked {%

checked {%

Resource management Home blog Test Notes Sigin Signup services ~

start_test log-out create_blog

total question:
attempted question
wright question

wrong question

Questions in which you make mistake

1 .choose the oldest programming language?
b language ®

c language O

java language O

Jjava script language O

2 .choose the immutable element in python.....
list ©

tuple O

string ©

more than one ®

3 .which is not a language of 8th schedules?
hindi ©

english ©

Jjava language @

all of these O

test again

name

name@example.com

Blog system

The Blog System is a key feature of the Resource Management Project, providing users with a
collaborative platform for sharing insights, knowledge, and fostering community
engagement. Developed within the Django framework, this module enhances the
educational experience by facilitating communication, information exchange, and
collaborative learning.

6.1 content creation:

Users can create and publish blog posts on various different topic. Supports the
inclusion of text and images for comprehensive content. When user click blog tab then
main blog section is open which show 5 recent blogs. from main blog page any user
can read the post and if he likes the post then goes to detailed blog page where he can
read blog in details. The architecture of blog features is also based on mvt.

Models.py file of blog app

from django.db import models
from django.utils.html import format_html
from tinymce.models import HTMLField

class category(models.Model):
no=models.IntegerField(primary_key=True,auto_created=True)
name=models.CharField(max_length=100,null=True)
discription=models.TextField()
picture=models.ImageField(upload_to="'category/")

def str_ (self):
return self.name

def img_tag(self):
return format_html('<img src="/media/{}" style=" width:50px;
height:50px;" />'.format(self.picture))

class post(models.Model):
post_no=models.IntegerField(primary_key=True,auto_created=True)
title=models.CharField(max_length=100)
content=HTMLField()
picture=models.ImageField(upload_to="post/")
cat=models.ForeignKey(category,on_delete=models.CASCADE)
date=models.DateTimeField(auto_now_add=True,null=True)

def str_ (self):
return self.title

def abhi(self):
return format_html('<img src="/media/{}" style=" width:50px;
height:50px;" />'.format(self.picture))

views.py file of blog app

from .models import *

the main_blog function of views.py file is responsible for
rendering 5 blogs on main blog page filtered by date.

def main_blog(request):
posts=post.objects.all().order_by('-date')[:5]
cat=category.objects.all()
return render(request, 'blog/blog.html’',{ 'posts':posts, 'cats':cat})

the detailed blog function of views.py file is responsible
for rendering details blogs from main blog page when user
clicks on read more.

def detailed_blog(request,postid):
p=post.objects.get(post_no=postid)
c=category.objects.all()
return render(request, 'blog/detailedpage.html’',{'p':p, 'cats':c})

the category blog function of views.py file is responsible
for rendering categories wise blogs from main blog page or
details blog page.

def category_blog(request,catid):
c=category.objects.get(no=catid)
p=post.objects.filter(cat=c)
return render(request, 'blog/category_blog.html',{'c':c,'p':p})

the create blog function of views.py file 1s responsible
for providing an interface where students or admin can
create blog.

def create_blog(request):
cat=category.objects.all()
return render(request, 'blog/create_blog.html',{'cat':cat})

the save blog function of views.py file 1is responsible for
saving blog post to the database.

def save blog(request):
try:

demo=post()
demo.title=request.POST['title"]
demo.content=request.POST['content']
demo.picture=request.FILES['picture']
n=int(request.POST['category'])
c_id=category.objects.get(no=n)
demo.cat=c_id
demo.save()
return HttpResponseRedirect('http://localhost:8000/blog/main_blog/")

except:
return
HttpResponseRedirect('http://localhost:8000/online_exam/sign_in/")

template file of blog app

this page of template file is used by main_blog function
of views.py file of blog app to show main blog page.

{% extends "blog/base.html" %}

{% block title %}welcome to the blog{% endblock %}
{% block content %}

<div class="container">

<div class="owl-carousel">

{% for cat in cats %}
<div class="card">

<img src="/media/{{cat.picture}}" class="img-fluid" style="height:
180px; ">

<div class="card-body text-center">
<h6 class="card-title">{{cat.name}}</h6>
<p class="card-text">{{cat.discription |truncatechars:20}}</p>
<a href="/blog/category_blog/{{cat.no}}" class="btn btn-
primary">view
</div>
</div>
{% endfor %}

</div>
</div>
<div class="container ">
<div class="row ">
{% for post in posts %}
<div class="col-md-8 pt-4">
<h3>{{post.title |upper}}</h3>
<p>{{post.content |truncatewords:70 }}</p>
<div class="container pt-4 pl-5 text-center ">
<a href="/blog/detailed blog/{{post.post _no}}" class="btn btn-
primary ">read more...
</div>
</div>
<div class="col-md-4 pt-4">

</div>

{% endfor %}
</div>
</div>
{% endblock %}

this page of template file is used by category blog
function of views.py file of blog app to show blog
category wise.

{% extends "blog/base.html" %}
{% block title %}blog{% endblock %}

{% block content %}

<div class="container-fluid">
<div class="row justify-content-evenly text-center">
<div class="col-1g-8 col-md-12">
<h3> {{p.title |capfirst}}</h3>

<p class="pt-4 "> {{p.content | safe}}</p>

</div>
<div class="col-1g-3 col-md-12">

{% for cat in cats %}
<div class="card">

<div class="card-body text-center">
<h6 class="card-title">{{cat.name}}</h6>
<p class="card-text">{{cat.discription
| truncatechars:20}}</p>
<a href="/blog/category blog/{{cat.no}}" class="btn btn-
primary">view
</div>
</div>

{% endfor %}

</div>

</div>

</div>
</div>
{% endblock %}

this page of template file is used by detailed blog
function of views.py file of blog app to show a detailed
blog from main blog page on clicking read more button.

{% extends "blog/base.html" %}
{% block title %}blog{% endblock %}

{% block content %}
<div class="container-fluid">
<div class="row justify-content-evenly text-center">
<div class="col-1g-8 col-md-12">
<h3> {{p.title |capfirst}}</h3>

<p class="pt-4 "> {{p.content | safe}}</p>

</div>
<div class="col-1g-3 col-md-12">

{% for cat in cats %}
<div class="card">

<div class="card-body text-center">
<h6 class="card-title">{{cat.name}}</h6>
<p class="card-text">{{cat.discription
| truncatechars:20}}</p>
<a href="/blog/category blog/{{cat.no}}" class="btn btn-
primary">view
</div>
</div>

{% endfor %}

</div>
</div>
</div>
</div>
{% endblock %}

Resource management Home blog Test Notes Sigin Signup services ~

< - = o e Ay - g
e L Success‘Story
N 4 b, e M

Programming Language Finance Success story

Read blog by profes. finance involves ma... Stories of success ..

HOW CENTRAL BANK MANAGE ECONOMY OF A
COUNTRY?

<p>Central banks play a crucial role in managing the economy of a country. Their primary
responsibilities often include controlling monetary policy, issuing currency, regulating and supervising
financial institutions, and maintaining financial stability. Here are some of the key ways in which central

banks manage the economy:</em=> </p> <div class="flex-1 overflow-hidden" <div clas: react

scroll-to-bottom--css-gubtr-79elbk h-full"> <div class="react-scroll-to-bottom

css-gubtr-1n7mOyu" >
<div class="flex flex-col pb-9 text-sm"> <div class="w-full text-token-text-primary" data-
testid="conversation-turn-5"> <div class="px-4 py-2 justify-center text-base md:gap-6 m-auto”> ...

read more.

HOW DOES BITCOIN WORK?

<p style="text-align: left;"> As a new user, you can get started with Bitcoin without
understanding the technical details. Once you've installed a Bitcoin wallet on your computer or mobile

phone. it will generate your first Bitcoin address and you can create more whenever you need one. You
can disclose your addresses to your friends so that they can pay you or vice versa. In fact, this is pretty

similar to how ...

read more.

KNOW YOUR CUSTOMER: WHAT TRIGGERS THEM TO
BUY YOUR PRODUCTS OR SERVICES

As an entrepreneur, it is important to note that customers would not buy your product or service unless
something causes them to buy. This is often overlooked, but trust us when we say that buying triggers
are one of the most important pieces of information you can collect about your customer. Simply
selling your product through different channels is not enough to attract and retain loyal customers. It

requires a ...

DECODING CODE: A GUIDE TO CHOOSING THE RIGHT
PROGRAMMING LANGUAGE FOR YOU"

Selecting the right programming language is a crucial decision for aspiring developers and seasoned
, and specific use cases. In this blog, we'll ‘

Ptograrnming
Languages

coders alike. Each language has its strengths, weakness
explore essential factors to consider when choosing a programming language that aligns with your
goals and projects. Define Your Goals: Begin by clarifying your objectives. Are you interested in web
development, data science, mobile app development, or game programming? Different ..

BLOCKCHAIN: WHY AND WHAT?

why blockchain? &A= A2 @1 U AaRka fBRed Aok 21 gg @924 1 gl 3r@uRvn @) aad a8
I BHR a &1 GAfaa &= & fog Hdiga sifamifyal @ @1 srazaear 781 8, saf@maa 53
fasp-dipa 3R Txfaa s @1 So1 A= e uitha & Areas 4 ot 2 9t Sugimealedf gt fea e
feeerniteas ufssail g1 YRan @-1g w6l sdl €, el R oo neaqgol ARwang €1

This is the main blog page view where user can see 5 blogs at a time. When user can click on read
more then dynamically open detailed blog where category is visible in side bar. The upper side of
main blog page has an owl carousal, from there one can find blog category wise.

6.2 categorization and searching:

for seeing category wise blog one can click on top slider view button
and can see category wise blog as shown in next image.

& InPrivate im] [welcome to the blog

&= = C QR @ localhost

€3 import favorites @ Dell 1 Gmail » YouTube JA4 Maps (@ WhatsApp

Resource management

Home blog Test Notes Sigin Signup services ~

< P/i)f
Programming
Languages
C.*
Jav a
Technology Guidance Programming Language
Technology is the a... Read articles on va... Read blog by profes...

HOW CENTRAL BANK MANAGE ECONOMY OF A
COUNTRY? Ry STy

<p>Central banks play a crucial role in managing the economy of a country. Their primary & ¥

On clicking view button of technology category one can view blog category wise as you can see in
below image.

Technology

Technology is the application of conceptual knowledge for achieving practical goals, especially in a reproducible way.

Blockchain: why and what?

How does Bitcoin work?

Programming Language

= 2 o
= = S AN St 2

C=2 ~_ & o ISy 1[:‘/‘
PrograImEnimg

"y

J AN (@ |

Innanguages

Read blog by professionals before jumping on new programming language.

Decoding Code: A Guide to Choosing the Right Programming Language for You"

From category blog one can also go for details blog.

Resource management

Home blog Test Notes Sigin

signup

services ~

Decoding Code: A Guide to Choosing the Right Programming
Language for You"

Programmming

Languages

Technology

Technology is the a...

Selecting the right programming language is a crucial decision for aspiring developers and seasoned coders alike.
Each language has its strengths, weaknesses, and specific use cases. In this blog, we'll explore essential factors to
consider when choosing a programming language that aligns with your goals and projects. Define Your Goals: Begin

by clarifying your objectives. Are you interested in web development, data science, mobile app development, or
game programming? Different languages excel in spec

ic domains, so understanding your goals narrows down the
options. Consider Learning Curve: Evaluate your familiarity with programming. If you're a beginner, languages like Guidance
Python and JavaScript are known for their readability and ease of learning. For more experienced developers,
languages like C++ or Rust might be suitable for performance-critical applications. Community and Support: A
vibrant community can be a lifesaver when you encounter challenges. Choose a language with an active community
and robust online resources. Forums, documentation, and tutorials play a crucial role in your learning journey and
problem-solving. Job Market Demand: Research the demand for specific programming languages in the job market.
Languages like JavaScript, Python, and Java are often in high demand, offering diverse opportunities. However,

Read articles on va...

niche languages might be valuable in specific industries or roles. Project Requirements: Tailor your language choice
to the project’'s requirements. For web development, consider HTML, CSS, and JavaScript. Data science tasks often
involve Python and R, while mobile app development leans towards languages like Swift (iOS) or Kotlin (Android).
Performance Needs: Evaluate the performance requirements of your project. Low-level languages like C and C++

are ideal for system-level programming, while interpreted languages like Python may prioritize ease of

development over raw performance. Ecosystem and Libraries: Explore the ecosystem and libraries associated with
each language. A robust ecosystem can significantly speed up development by providing pre-built solutions and
third-party libraries. For example, Node.js has a vast ecosystem for server-side JavaScript development. Longevity

and Trends: Consider the longevity of the language and its current trends. While established languages like Java and

=

?iograﬁnming
Languages

C++ continue to be relevant, newer languages might offer modern features and paradigms. Be mindful of industry

trends without completely disregarding stability. Conclusion: Choosing a programming language is a personal and

project-specific decision. By defining your goals, considering the learning curve, evaluating community support,
assessing job market demand, understanding project requirements, considering performance needs, exploring
ecosystems, and staying mindful of trends, you can make an informed decision that aligns with your aspirations.

Happy coding!

Programming Language

Read blog by profes...

Finance

User can go to category page from
details blog page.

finance involves ma...

_‘é%ss[StoFy
AT e A

Success story

Stories of success ...

Submit

Notes repository:

The Notes App is an integral component of the Resource Management Project,
offering users a robust platform for creating, organizing, and sharing educational
notes. Developed within the Django framework, this module addresses the need
for an efficient and user-friendly solution to manage course materials and support

collaborative learning.

The Notes App responds to the demand for a centralized and organized repository
for educational materials within the Resource Management Project. It empowers
users to compile, store, and access course-related notes in a structured and
intuitive manner.

Objectives:
Provide users with a platform to create, store, and organize educational notes.
Support collaborative learning through the sharing of notes among users.

Enhance the learning experience by facilitating easy access to course materials.

The Notes App follows the Model-View-Template (MVT) architecture of Django:

Models.py file of notes app

from django.db import models
from django.utils.html import format_html

class courses(models.Model):
c_name=models.CharField(max_length=20,null=False)
c_desc=models.CharField(max_length=50)
c_pic=models.ImageField(upload_to="'courses/")
def str_ (self):
return self.c_name

def pic(self):
return format_html('<img src="/media/{}" style=" width:50px;
height:50px;" />'.format(self.c_pic))

class notes(models.Model):
sub=models.CharField(max_length=20)
sub_code=models.CharField(max_length=8)
semester=models.IntegerField()
material=models.FileField(upload_to='material/")
course=models.ForeignKey(courses,on_delete=models.CASCADE)
uploaded_by=models.CharField(max_length=25)

viewss.py file of notes app

from django.shortcuts import render
from django.http import HttpResponse,HttpResponseRedirect
from .models import *

this function is used for rendering available
courses for notes

def course_list(request):
c=courses.objects.all()
return render(request, 'notes/notes.html',{'c"':c})

this function is used for rendering notes for
particular course’s notes

def course(request,id):
c=courses.objects.get(id=id)
p=notes.objects.filter(course=c)
return render(request, 'notes/bca_semester.html',{'p':p})

this function is used for rendering form to upload
notes to database

def note_upload(request):
a= courses.objects.all()
return render(request, 'notes/notes_upload.html',{'a':a})

this function is used to save data send by
note upload function

def note_save(request):

try:
d=request.POST['course']
p=courses.objects.get(id=d)
demo=notes()
demo.sub=request.POST['sub"']
demo.sub_code=request.POST['sub_code']
demo.semester=request.POST['semester']
demo.course=p
demo.uploaded_by=request.POST['uploaded by"']
demo.save()
return HttpResponse("successfully uploaded")

except:

HttpResponse('some errors occurred try after some time')

Template file for notes

This template html file is used to show courses for notes

{% extends "online_exam/base.html" %}
{% block title %}notes{% endblock %}
{% block content %}
{% load static %}
<div class="container ">
<div class="row row-cols-1 row-cols-md-2 row-cols-1g-3 justify-content-
evenly">
{% for c in c %}
<div class="col pb-4
<div class="card" ">

<div class="card-body text-center">
<h5 class="card-title">{{c.c_name}}</h5>
<p class="card-text">{{c.c_desc}}</p>
view
</div>
</div>
</div>
{% endfor %}
</div>
</div>
{% endblock %}

>

This template html file is used to notes uploading form
<!-- upload_note.html -->
{% extends "online_exam/base.html" %}
{% block title %}note-upload{% endblock %}
{% block content %}
<h2>Upload Note</h2>

<form method="post" enctype="multipart/form-data"
action="/notes/note_save/">
{% csrf_token %}
<label for="course">Course:</label>
<select name="course" id="course">
{% for course in a %}
<option value="{{ course.id }}">{{ course.c_name }}</option>
{% endfor %}
</select>

<label for="title">sub:</label>
<input type="text" name="sub" required>

<label for="content">sub code:</label>

<input type="text" name="sub_code">

<label for="content">semester:</label>

<input type="number" name="semester">

<label for="content">uploadedby:</label>

<input type="text" name="uploaded_by">

<label for="file">Upload File:</label>
<input type="file" name="file" accept=".pdf, .doc, .docx">

<button type="submit">Upload Note</button>
</form>
{% endblock %}
This template html file is used to show notes according to

courses

{% extends "online_exam/base.html" %}
{% block title %}notes{% endblock %}
{% block content %}
<div class="container">
{% for p in p %}
<div class="row">
<div class="col-3">sem-{{p.semester}}th sub-code({{p.sub_code}})</div>
<div class="col-3">{{p.sub}}
 upload by- {{p.uploaded_by}}</div>
<div class="col-6"><embed src="/media/{{p.material}}" type="pdf.pdf"></div>
</div>
{% endfor %}
</div>
{% endblock %}

The interface for notes uploading

2 ® O D roteulos % | (] Diango tdu Resource Hub x | + - o X
&« C o (D localhost:8000/notes/note_upload/ Ay a3 h = &3 B - o

B2 Import favorites |] Dell ™ Gmail @B YouTube RB¥ Maps (® WhatsApp

fesource management Home blog Test Notes Sigin Signup services ¥

Upload Note

Course: BCA v ‘

sub: ‘

Upload File: Choose File | No file chosen

Upload Note

sub_code:

semester:

uploadedby:

Resource management Home blog Test Notes Sigin Signup services ¥

(Master of Co

BCA MCA BBA

Bachelor of Computer Applications (BCA) Masters of Computer Applications (MCA) Bachelor of Business Applications (BBA)

view view

MBA

Masters of Business Applications (MCA) B.Ed

Bachelor of Education (B.Ed)

Submit

the upper image shows the courses for notes while below image show the notes of a particular section

Resource management Home blog Test Notes Sigin Signup services ~

sem-4th sub-code-(BC-404) software engineering
upload by- Abhishek kumar

This plug-in isn't supported

sem-5th sub-code-(BC-502) python
upload by- Abhishek kumar

This plug-in isn't supported

sem-4th sub-code-(BC-402) java
upload by- rajkapoor

This plug-in isn't supported

sem-4th sub-code-(BC-402) java
upload by- rajkapoor

This plug-in isn't supported

7.2 Organization and Accessibility

When user enters as students then on home interface there
is a button by clicking on that he can upload notes.in
resource management we organize notes according to courses
as you can see models where we build a foreignh key name
‘course’ to organise notes according to course.

Any user can access the notes course wise
without any login from main landing page.

Resource Management

Upload notes after login

Manage Resources.

Start Test | post question on forum PRSTGIEIEANGIESM upload Notes

7.3 Integration with Other Modules:

Notes module is integrated with online_exam. When user
enters as student then there are two buttons from there, they
can explore notes as well as upload notes.

The Notes App in the Resource Management Project reflects
the project's dedication to providing comprehensive and user-
centric solutions for the educational community. although it
can be improved with feature like adding editing and
highlighting features.

Discussion forum

The Discussion Forum module within the Resource Management Website serves as a collaborative
space for students to post questions and receive answers from peers.

Discussion creation: - any user by login can create a question on forum and also answer on any
discussion. Although any user can explore the forum from main landing page by clicking visit
forum. This module is also follow MVT architecture.

Models.py file of discussion forum

class DiscussionPost(models.Model):
author = models.CharField(max_length=100)
content = models.TextField()
is_question = models.BooleanField(default=True)
created_at = models.DateTimeField(auto_now_add=True)

def __str__(self):

return f"{self.author} - {self.created_at}"

view.py file of discussion forum

this function of views.py is used to display forum

def discussion_forum(request):
questions = DiscussionPost.objects.filter(is_question=True)
answers = DiscussionPost.objects.filter(is_question=False)
return render(request, 'discussion_forum/discussion_forum.html",

{'questions': questions, 'answers': answers})

this function of views.py is used to save Q and Ans to
database.

def create_post(request):
if request.method == 'POST':

author = request.POST.get('author")

content = request.POST.get('content')

is_question = request.POST.get('is_question') =='on'

DiscussionPost.objects.create(author=author, content=content,
is_question=is_question)

return redirect('discussion_forum')
return render(request, 'discussion_forum/create_post.html")

Recourse Management landing page

Resource management

Home blog Test Notes Sigin Signup services ~

Welcome to Resource Managem|

Your hub for online tests, blogging, notes, and discussions.

Explore the various features and enhance your learning experience.

Learn more

Online Tests Blog Notes
Take online tests and track your Share your insights and engage in Organize and access course materials easily
performance with detailed analytics. discussions with the community. with our notes repository.

=

Discussion Forum

Join discussions, ask questions, and collaborate with fellow learners in our discussion forum.

name@example.com

Submit

from main landing page any one can visit forum and from
there they can post question as well as answer for forum.

Admin interface’ view

Question Management

Manage questions for online tests.

Create Question Manage discussion forum

O mron e

&« C M @ localhost:8000/forum/discussion/ A CIm e @ K o o

B3 import favorites | 7] Dell ™4 Gmail B YouTube B¥ Maps 3 WhatsApp

Discussion Forum

Questions

abhishek kumar - Dec. 19, 2023, 6:07 p.m.

how to write project report for final semester?

sunny - Dec. 19, 2023, 6:13 p.m.

how to gets good marks?

Answers

abhishek kumar - Dec. 19, 2023, 6:14 p.m.

you can get good marks in exam by throughly revise the content teach by teachers.

Post a Question or Answer

1

£ © B o 5 O o e ek

< C @ (@ localhost:8000/forum/create_post/ A e Slm = @ |V - o

€3 import favorites | £ Dell ™ Gmail B YouTube #¥ Maps @@ WhatsApp

Create a New Post
Author: |

Conmtent: . 7z

Is this a question? [
Submit Post

Back to Discussion Forum

Resource Management

Manage Resources.

Start Test | post question on forum - upload Notes

Student interface after login

Implementation

9.1 Development Environment Setup: Setting up a well-organized development
environment is crucial for the successful implementation of a project using Django. we
Follow these steps to ensure a smooth development process:

Virtual Environment: use the command python -m venv venv
Activate Virtual Environment: for activating type venv\Scripts\activate
Install Dependencies: pip install -r requirements.txt

After model creation first makemigrations and then migrate

Database Setup: python manage.py makemigrations
python manage.py migrate

create super user- python manage.py createsuperuser
Static Files:
Configure static files in settings.py file
Configure static files in settings.

Type command -python manage.py collectstatic
Project creation-django-admin createproject projectname
App creation-python manage.py startapp app_name
Run server-use command python manage.py runserver
Access Admin Panel:
Visit http://localhost:8000/admin/ and log in with the superuser credentials.
9.2 Django Best Practices
Project Structure:
Organize the project into apps based on functionality (e.g., users, resources).
Follow Django's recommended project structure.

Code Readability:

Adhere to PEP 8 style guidelines for consistent and readable code.
Use meaningful names for variables, functions, and classes.
Models and Migrations:

Design clear and concise models.

Templates:

Utilize Django template tags for dynamic content.

Keep templates modular and organized.

Views and URL Patterns:

Keep views simple and focused on specific functionality.

Use well-structured URL patterns.

Forms:

Leverage Django forms for input validation and handling user data.
Organize form classes effectively.

Middleware:

Utilize middleware for cross-cutting concerns like authentication and security.
Keep middleware logic clean and focused.

Security:

Implement secure coding practices to prevent common web vulnerabilities.

Use Django's built-in security features, such as protection against SQL injection and
cross-site scripting.

Testing:
Write comprehensive unit tests and functional tests.

Use Django's testing framework for automated testing.

9.3 Testing Strategies: testing is very important so that a django app or project
could perform in intended way.

We generally during development of Resource management website
use some common type of testing such as:

Unit testing: tests for individual components, such as models, views, and forms.

integration Testing: Testing the integration of different components within the
application.

Ensure seamless collaboration between app functionalities.

Regression Testing:

Implement regression tests to catch unintended side effects during code changes.
Run automated tests regularly.

You can also go for others testing methods like user acceptance testing, load testing
etc.

Conclusion

10.1 Achievements:

Module Integration: Successfully integrated and implemented various modules,
including the Online Exam Module, Blog System, and Notes App, each contributing to
different aspects of the educational journey.

User Engagement: Established a vibrant community for vocational students to
participate in discussions, share insights through blogs, and collaboratively manage
educational notes.

Scalability and Maintainability: Utilized the Django framework and a modular design
approach, ensuring the scalability and maintainability of the system as it evolves.

Security Measures: Implemented robust security measures to safeguard user data
and protect against potential vulnerabilities, ensuring a secure online learning
environment.

User-Friendly Interfaces: Developed intuitive and responsive user interfaces across
modules, ensuring a seamless and enjoyable user experience.

10.2 challenges

Security Implementation: we are facing hurdles in implementing comprehensive
security measures to protect user data and prevent unauthorized access. Although
we are working on it to overcome.

Collaborative Features: Balancing the implementation of collaborative features in
modules like the Blog System and Notes App, ensuring they enhance rather than
disrupt the learning experience.

10.2 Future Enhancements

While the initial scope is focused on essential features, the project allows for future
enhancements, such as the integration of additional functionalities like a chat
system, online attendance through face recognition, separate features for registering
and selling product, fund rising, extending its features towards humanities and
others streams students.

Adding multimedia in blog and notes section of website to enhance students’
productivity.

Acknowledgement

We extend our heartfelt gratitude to the individuals whose
dedication and expertise were instrumental in the successful
development and implementation of the Resource Management Web
app. Their contributions have been invaluable in shaping this
innovative platform for online education.

- - -

Abhishek kumar Backend of Resource management
Roll-214153 Logo of project, project report writing
Reg-19RGVBCAO037

\ e R
- T -

frontend of Resource management
Sunny kumar co-ordination between members

Roll-2140734 bootstrap work of project
Reg-19RGVBCA036

~_ / -
— - D

frontend of Resource management

Navneet kumar CSS and java script
Roll-214164 design of project
Reg-20CCVGCS047

—

Testing for Resource management

Ankesh kumar html
Roll-214133 co-writer of project report

Reg-20CCVGCS016

References

Django documentation- https://docs.djangoproject.com/
W3schools- https://www.w3schools.com/

Bootstrap5.3 documentation-https://www.bootstrap.com/
Django tutorial on w3c YouTube channel

https://docs.djangoproject.com/
https://www.w3schools.com/

